- Title
- Arithmetic of linear forms involving odd zeta values
- Creator
- Zudilin, W.
- Relation
- Journal de Theorie des Nombres de Bordeaux Vol. 16, Issue 1, p. 251-291
- Publisher Link
- http://dx.doi.org/10.5802/jtnb.447
- Publisher
- Universite de Bordeaux I
- Resource Type
- journal article
- Date
- 2004
- Description
- A general hypergeometric construction of linear forms in (odd) zeta values is presented. The construction allows to recover the records of Rhin and Viola for the irrationality measures of ζ(2) and ζ(3), as well as to explain Rivoal’s recent result on infiniteness of irrational numbers in the set of odd zeta values, and to prove that at least one of the four numbers ζ(5), ζ(7), ζ(9), and ζ(11) is irrational.
- Subject
- arithmetic; linear forms; odd zeta values; hypergeometric construction
- Identifier
- http://hdl.handle.net/1959.13/934880
- Identifier
- uon:11930
- Identifier
- ISSN:1246-7405
- Language
- eng
- Full Text
- Reviewed
- Hits: 3744
- Visitors: 4332
- Downloads: 394
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | ATTACHMENT01 | Publisher version (open access) | 517 KB | Adobe Acrobat PDF | View Details Download |